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Dynamic Analysis of a Three-Degrees-of-Freedom 
In-Parallel Actuated Manipulator 

KOK-MENG LEE AND DHARMAN K. SHAH 

Abstract-Despite the voluminous publications on robot dynamics and 
control, the literature to date is based solely on the serial link manipula- 
tors. Little attention has been given to the alternative manipulator design 
based on the concept of in-parallel actuated mechanism, which is 
characterized by its excellent rigidity, high strength-to-moving-weight 
ratio, and relatively simple inverse kinematics. This communication 
presents the dynamic analysis of a three-degrees-of-freedom in-parallel 
actuated manipulator. The equations of motion have been formulated in 
joint space using Lagrangian approach. The analysis provides the 
solution to predict the forces required to actuate the links so that the 
manipulator follows a predetermined trajectory. A dynamic simulation 
program which has been developed illustrates the influence of the link 
dynamics on the actuating force required. The dynamic analysis provides 
a basis for future theoretical research to develop the control scheme, for 
experimental research to estimate the inertia parameters, and for design 
optimization of the prototype manipulator. 

I. INTRODUCTION 
Recently, some effort has been directed towards alternative 

manipulator designs based on the concepts of closed kinematic chain 
mechanism to improve manipulator rigidity and strength-to-weight 
ratio. The closed kinematic chain mechanism, in general, has 
relatively simple inverse kinematics as compared to the conventional 
open kinematic chain mechanism. The closed kinematic chain 
manipulator has potential applications where the demand on work- 
space and maneuverability is low but the dynamic loading is severe 
and high speed and precision motion are of primary concern. 

Typical examples of in-parallel mechanism are the camera tripod 
and the six-degrees-of-freedom Stewart platform. The Stewart 
platform was originally designed as an aircraft simulator [ 11, later as 
a robot wrist [2], and as a tendon actuated in-parallel manipulator [3], 
[4]. Various applications of the Stewart platform were investigated 
for use in mechanized assembly [5] and as a compliance device [6]. 
The kinematics and practical design considerations of the Stewart 
platform for use as a manipulator were considered in [7], [8]. A 
systematic review on possible alternative in-parallel mechanisms and 
other combinations in which part of the manipulator is serial and part 
parallel were addressed in [9], [lo]. Recently, some efforts were 
directed towards the dynamic analysis of the Stewart platform using 
the Newton-Euler method [ l l ]  and screw theory [12]. A more 
general analysis for the six-degree-of-freedom (DOF) multiloop 
parallel manipulators was discussed in [ 131 and [ 141. 

Apart from the Stewart platform manipulator, Landsberger and his 
co-workers at MIT [4] have constructed a 3-DOF in-parallel tendon- 
actuated positioner as a first step to Stewart platform implementation. 
Since the tendon i s  essentially massless and the spine of the 3-DOF 
positioner is hydraulically driven, the positioner dynamics are 
primarily due to the hydraulic servo and the unknown payload. 
Although no analytical dynamic simulation result was presented, 
experimental simulation was made to prove the concept feasibility. 
The 3-DOF positioner has the advantages of being lightweight, 
simple dynamics and control, and is well-suited for tasks (such as 
lifting objects or welding) where the demands on compression load 
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are of less concern as compared to that on tension load through the 
tendons. 

Small working space is commonly recognized as one of the 
drawbacks of the Stewart platform manipulator as compared to a 
serial link manipulator. The authors have performed the kinematic 
analysis of a 3-DOF tripod-like manipulator which has two orienta- 
tion freedoms and one translatory freedom based on the concept of in- 
parallel actuated mechanism [ 151, [ 161. In particular, the closed-form 
solution of the inverse kinematics were presented and the influences 
of physical constraints on the range of motion were discussed in [ 151. 
Also, various potential applications where the 3-DOF in-parallel 
actuated manipulator may be used as part of the 6-DOF manipulator 
system to enlarge the working space were highlighted in [15] and 

This communication focuses on the dynamic analysis of a 3-DOF 
in-parallel manipulator using Lagrangian approach. In particular, the 
communication presents the formulation of the dynamic equations in 
joint space and the solutions which determine the forces/torques 
required to follow a prescribed trajectory. An example of tracing a 
helical path is chosen to illustrate the dynamic simulation and to show 
that the Cartesian position of the moving platform may be controlled 
at a sacrifice of orientation freedoms. In applications such as 
unattended precision machining and fixturing, where both high 
dynamic compression and tension loading are required, the tendon- 
driven in-parallel actuated manipulator is less rigid than optimum. 
Hence, the influences of link dynamics are highlighted by means of 
dynamic simulation results. 

~ 7 1 .  

11. KINEMATICS 

A schematics of the 3-DOF in-parallel actuated manipulator is 
shown in Fig. 1. The manipulator consists of a base platform, three 
extensible links, and a moving platform which houses the driving 
mechanism of the gripper. The moving platform is connected to the 
links by means of ball joints which are equally spaced at 120" and at a 
radius r from the center of the moving platform. The other ends of the 
links are connected to the base platform through equally spaced pin 
joints at a radius R from the center of the base platform. By varying 
the link lengths, the moving platform can be manipulated with respect 
to the base platform. 

As shown in Fig. 1 ,  a base coordinte frame which is designated as 
X Y Z  frame is fixed at the center of the base platform with its Z-axis 
pointing vertically upward and the X-axis pointing towards the pin 
joint 1 ,  P1. Similarly, a coordinate frame xyz is assigned to the 
center of the upper platform, with the z-axis normal to the platform 
and the x-axis pointing towards the ball joint 1, b 1. The coordinate 
frame xyz with respect to the base coordinate frame X Y Z  can be 
described by the homogeneous transformation [TI 

where (xc ,  y, ,  z , ) ~  describes the position of the origin of the xyz 
frame and the orientation vectors ( n l ,  n 2 ,  n3)', (01, 0 2 ,  0 3 ) ~ ,  and 
( a l ,  a2,  a3)  are the directional cosines of the axes x ,  y ,  and z with 
respect to the base frame X Y Z .  

In the dynamic analysis of the manipulator, both the inverse and 
forward kinematics are necessary. As the derivation of the kinematic 
equations has been discussed in [15], only the result of kinematic 
analysis are presented here. 

A .  Inverse Kinematics 
In terms of Z-Y-Z Euler angles, it has been determined in [15] 

that the two orientation freedoms of the moving platform with respect 
to the base platform are the precession angle a and the nutation angle 
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oving platform 
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Yx Pin joint 

Fig. 1. Three-degree-of-freedom in-parallel actuated mechanism schematic. 

P.  The Cartesian translatory freedom is in the Z direction. The spin 
angle of the moving platform y, wiih respect to the base platform, has 
been determined to be 

L: = 1 + p2 + Xf + Yf + Zf + Xc + ./3 yc 

- p [CiC, + Si+ &C,S,(C, - I)] 

- p[S,C,(C, - 1) + &(Sic, + 

a =  -y  (2) 

and the other two Cartesian position variables in the X and Y 
directions are 

(4) 
1 

Y c = 2  P ( 1  -C,)S2a 

where CO = cos /3, Sh = sin 2 s ,  Ch = cos 2a, p = r /R,  X ,  = 
x, /R,  and Y, = y , /R.  The actuating lengths of the links for a 
prescribed position and orientation of the moving platform have been 
expressed in terms of 2-Y-2 Euler angle as 

L : = l + p Z + x f +  Y ~ + Z f - 2 X c + 2 p ( C ~ C , + S ~ ) ( X , - 1 )  

+ P cc0 - 1)S2, Y, - 2pS,CaZc ( 5 )  

+ PS, [C,  + ./3&?1 z c  (7) 

where Sa = sin a, C, = cos a, So = sin P ,  Zc = z J R ,  and L, = 
l i /R ,  i = 1, 2, 3. For a prescribed position and orientation of the 
moving platform, the dependent variables are defined by (2)-(4). 
Equations (5)-(7) are the inverse kinematic equations which define 
the actuating lengths of the links. 

B. Forward Kinematics 
The forward kinematic can be obtained by noting that the in- 

parallel actuated manipulator is essentially a rigid structure for a 
given set of link lengths. As the distance between the adjacent ball 
joints is &r, the implicit relationship between the link lengths L I  , 
L2,  and L3 and the angles e l ,  e2, and 03 are 

L : + L ; + ~ - ~ ~ ~ + L ~ L ~  COS el cos e2 

L ; + L : + ~ - ~ ~ ~ + L ~ L ~  C O S ~ ~ C O S  e3 
-2L1L2 sin O r  sin 02-3L1 cos 01-3L2  cos 02=0 (8) 

- 2L2L3 sin O2 sin O3 - 3L2 cos O2 - 3L3 cos O3 = 0 (9) 

L ; + L ; + ~ - ~ ~ ~ + L ~ L ~  COS e3 COS el 
- P [S,C,(C, - 1 )  - &(Sy, + Ci)] 

-2L3Ll sin O3 sin 01-3L3 cos 03-3L1 cos 01=0 (10) 

where Oi with i = 1, 2, 3 is defined to be the angle between the ith 
link and the base platform as shown in Fig. 1 .  (6) 
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Local rigidity, however, does not imply uniqueness; multiple 
solutions of O 1  , 0 2 ,  and O3 corresponding to a given set of link lengths 
are possible. The further mathematical constraint which is necessary 
to ensure uniqueness is 

oo <e,< 1800. 

In other words, the Cartesian position z, of the moving platform must 
be positive or the moving platform must always be on one side of the 
base platform. This criterion is a physical constraint on the 
hardware,not just mathematical artifacts. The physical constraints are 
imposed by the range of pin joints and the ball joints, which were 
discussed in [15]. 

For a given set of link lengths, the corresponding angles 0; can be 
computed numerically from (8)-( lo), which are implicit relationships 
between L; and e;, where i = 1 ,  2, 3 .  

Cartesian Position of Moving Platform: Since the ball joints are 
placed at the vertices of an equilateral triangle, the Cartesian position 
or the origin of the xyz frame can be determined as 

To determine the orientation of the moving platform, the directional 
cosines, which are denoted as the components of the vectors n, 0 ,  and 
a in the homogeneous transformation [TI,  are expressed in terms of 
0;. By equating (12) and ( 1 5 ) ,  the components of the normal vector n 
can be determined as 

1 - L I  cos e,-x, 
nl = 

P 

(18) 
where the ball-joint coordinates with respect to the base frame are L ,  sin O1 - 2, 

P 
n3 = 

x b , =  1 -L1 cos 81 
Similarly, equating (13) and (16), the orientation vector o is 

Ybl=o 
o1 =n2 

J 3 - 6 ~ ~  COS e2-3y,  
Zbl = L 1  sin 0, (12) 

0 2  = 
1 J 3 P  

(19) 

As the unit vectors n, 0 ,  and a form an orthogonal set, the 
components of the approach vector a can be determined as 

2Lz sin O2+LI sin 01-3Z,  
0 3  = 

J?P 

z b 2  = L2 sin O2 ( 1 3 )  al = n 2 0 3  - 02113 

a2= - n l o 3 + o l n 3  

a3 = nl o2 - n2 o1 . (20) 

Hence, for a given set of link length, (8)-(10) are computed 
numerically for the angles 0;. The Cartesian position is then 
computed from (1 1) and the orientation is obtained by computing the 
directional cosines of the axes x, y ,  and z with respect to the base 
frame X YZ from (18)-(20). 

& 
yb3= -- ( 1  -L3 COS 0,) 2 

(14) z b 3  = L3 sin &. 

111. FORMULATION OF DYNAMIC EQUATIONS 
Orientation of Moving Platform: With the Cartesian position of 

the ball joints defined in (12)-(14), the orientation of the moving 
platform can be determined by noting that the Cartesian position of The equations of motion which describe the actuating forces 
the ball ioints can also be exmessed as required to cause motion are derived using Lagrangian approach. In 

the following dynamic analysis, the dynamics of  the gripper are not 
included and the moving platform is assumed to be a circular plate. 
The mass of the moving platform is therefore assumed to have the 
center of gravity at the origin of the xyz frame. Since the actuating 
forces acting on the links Fl , F2, and F3, are to be found, the 
normalized link lengths L I ,  L2 ,  and L 3 ,  are chosen to be the ( 1 5 )  
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independent generalized coordinates and e l ,  e 2 ,  and e3 are the 
dependent generalized coordinates. The three constraint equations 

by directly differentiating (1 1) with respect to time such that 

(25) 
relating L; and 0; are given in (8)-(10). ax dL. axc& v = c L L + c  -- 

e aLj dt ; = I  aei dt The kinetic co-energy of the mechanism can be written as 
I =  1 

1 1 
2 2 T = -  M(Xf +jf +if)+- ( I , c o : + I ~ ~ w F + Z ~ W : )  where X,(X, ,  Y,, Z,) and Vc(X,, Yc,  Z,) are position and velocity 

vectors, respectively. The angular velocity, o ( w x ,  wu, wz) ,  in terms 
of the generalized coordinates can be determined by noting that the 
velocity of the ball joint may be written as 

vbi= V c + o x r j  

where r; is the line vector directed from the ith ball joint to the center 
of the moving platform. From the geometry, r; can be written as 

l 3  
2 (21) +- m d:Of 

(26) 
i =  I 

where 

M 
m mass of the link, 
d, 

w,, ay,  w, 

mass of the moving platform, 

distance between the pin joint and the centroid of 
each link, 
angular velocity of the body axes of the moving 
platform with respect to a moving frame parallel 
to the X Y Z  frame, 
moment of inertia of the moving platform about 

Due to the symmetry of the circular platform, Zxy, Zyz, and Is are 
identically equal to zero. The moments of inertia are 

rl = p i  

r2= (-; i + $  j )  p 

I,, Z,,, I ,  
x, y ,  and z, respectively. r 3 = ( - ; i - $ j )  p.  (27) 

The velocity of the ball joints with respect to the base frame is 

I ,  = Iyy = - 1 1  I,, = - Mr2. vbi  = i ;4 / ;  + 8i4,r x Li4/i (28) 
2 4  

where tPli and 4zi are the unit vectors along the ith link length and 
along the axis of the ith pin joint, respectively. In terms of the unit 
vectors of the base frame, the vectors are 

The potential energy of the mechanism is given by 

3 

P=Mgz,+ mg di sin Oi.  (22) 4/ ;=  -cos OIZ+sin OIK 
i =  1 

The Lagrangian equations of motion become 

where 

C = T - P  

I;, i = l ,  2, 3 
e;, i = 4 ,  5 ,  6 

Qi = 

1 d3 
4 1 2 = 2  cos e2Z-- cos OzJ+sin B2K 

2 

1 J3 
4[3=jCoS e3Z+-cos 03J+s in03K 

2 

and 

4 z 1 = J  

4 J3 l J  
2 2  22 - 

(30) 
d3 1 

4 ,3=3-  I - -  J. 
{Fi, i = l ,  2, 3 2 n. = 

z t  (c-3, i=4 ,  5 ,  6 By equating (26) and (28) for the ith ball joint and noting that the unit 
vector (i, j ,  k )  may be transformed to (I, J,  K )  through the 
homogeneous transformation [TI,  the angular velocities o ( w x ,  mu, 
w,) can be derived by equating the appropriate vector components as 

and where F; is the actuating force along the ith link and T j - 3 ,  i = 4, 
5 ,  6 are frictional torques of the ith link in the 0; direction. In the 
following discussion, the frictional torques are assumed to be zero. 
The constraint equations are 1 

cos e 2 - -  2 L2 sin e2 BI-X,) 
fk(L1, L ~ ,  L,, el,  e2, e3)=o (24) 

) & 
where k = 1 ,  2, 3. Note that fk(L; ,  e;, i = 1 ,  2, 3) are the constraint +a2 ( -$-i2 cos e,+- L2 sin ez 4,- P 

+ a 3 ( i 2  sin 

equations (8)-( lo), respectively. 2 

cos e2 . t j 2 - Z c ) - - w y  I v .  DETERMINATION OF THE VELOCITY COMPONENTS 2 
J 

As the link lengths and the angles Li and Oi have been chosen as 
1 

U,= -- [ a l ( - i l  cos e l + L l  sin el . OI-%,)-azP generalized coordinates, the Cartesian velocity and the angular 
velocity must be expressed as a function of L; and 0; and their 
derivatives with resp&t to time. The Cartesian position is a function 
of L; and 0; as shown in (1 1). The Cartesian velocity can be obtained +a3(t l  sin el  + L~ cos el . dl - Z,)]  (32) 
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TABLE I 
TRAJECTORY OF THE SIMULATION 

) 
) 

1 
P 2 

U,= -2 [o ,  (i i2 cos e 2 - -  L2 sin 0242-2c 

(33) @max *'k7\ & .  & 

+ 0 3 ( i 2  sin e2 + L~ cos e2 . 4, - Z,)]. 

L~ cos e2+- L2 sin e2e2-  Yc 
+ 0 2  (-y 2 

v. DETERMINATION OF ACTUATING FORCES 
In many real-time applications of on-line control of the manipula- 

tor, the Cartesian positionlorientation and the respective velocity and 
acceleration of the moving platform are known or predetermined. It is 
of interest to determine the forces required to actuate the links so that 

The kinetic coenergy T, the potential energy P, and the constraint 
equationsfk, are functions of Li ,  Bi, and their time derivatives. From 
(23), the force required to actuate the ith link is 

1 

I I 
I I 

the manipulator follows a predetermined trajectory. 0 t a  tb T* t 

1 U 
a= -- 1 4  d t + z  2 

(34) 

where i = 1, . . . , 6  and the three unknown Lagrangian multipliers Xj 
can be solved from the three simultaneous equations, i.e., (23) with i 
= 4, 5, 6, using Cramer's rule. The actuating force along the ith link 
can be computed by directly differentiating T, P, and fk  with respect 
to li and its derivatives. 

VI. AN EXAMPLE OF DYNAMIC SIMULATION 

An example of tracing a helical path is simulated to illustrate the 
above dynamic analysis. Although it is more practical to assume the 
manipulator has two orientation freedoms in addition to a third 
freedom in the z direction, the example illustrates that the Cartesian 
coordinates of the center point of the moving platform may be 
controlled at the sacrifice of orientation freedoms. The example is 
simulated with the following assumptions: 1) The pin and ball joints 
are assumed to be frictionless. 2) The position variation of the center 
of gravity of each link is negligible, i.e., di is constant. 

The helical path to be traced has a radius r* and a pitch h. The 
helical path with respect to the base frame can be described by the 
following equation: 

1 .  a i = - -  4 
2 

.. 1 .. a = - -  4 
2 

p=cos-1 [z ($) + 1 1  

h 
r* zc=zi+- 1 

Z c = O  

x=r*  cos I$ 

y = r *  sin I$  

z=zi+- t 
h 
T* 

TABLE I1 
PARAMETERS FOR SIMULATION 

where T* is the time required to travel one pitch, t is the time 
variable, and zi is any particular starting z .  As the center point of the 
moving platform is to follow the helical path, (3) and (4) are equated 
to the x and y components of (35) yielding 

(35) Manipulator Parameters 
R = 0.2286 m 

(36) Helix Parameters 2a+I$=n?r, n = O ,  + I ,  + 2  ... 
r* 
r cos p = 2  -+ 1. (37) 

Differentiating (36) with respect to time 

(38) 
1 .  

& =  -- I$ 
2 

the rate of change of I$ with respect to time is linearly proportional to 
(Y and p remains constant with respect to time for a constant r*. The 
trajectory can be planned based on I$  noting that the total time 
required for one helical path must be equal to T*. The parameters of 
the trajectory are summarized in Table I and the parameters used for 
simulation are listed in Table 11. 

p = 0.5 
D, = 0.5334 m* 
M = 0.18 kg 
m/M = 0.5 
d, = 0.1524111 

r* = 0.266 mm 
h = 0.03048 m 
z, = 0.3048 m 

Trajectory Parameters 
T* = 1 0 s  
to = 1 s  
tb = 9 s  
+mx = 2/9 T 

Dm is the distance between the center of the moving platform and the 
intersection between the axis of the ball-joint socket and the normal of the 
moving platform through the center [15]. 
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Fig. 2. Actuating lengths as a function of time. 

m - 0.0 kg 
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Fig. 3.  Computed actuating forces for m = 0.0. 

The corresponding actuating lengths are computed from the 
inverse kinematics as shown in Fig. 2 and the angles Oi are determined 
from the following relationship: 

(39) 
z b i  sin Oi = - 
L, 

where z b i  is given in (15)-(17). 
The actuating forces for the specified trajectory are computed for 

the following two cases: 1) The mass of eah link is assumed to be very 
small compared with the mass of the moving platform. This is 
particularly true for tendon actuated manipulator and is a good 
assumption for hydraulic actuated manipulator with high payload at 
the gripper. 2) The mass of the link is not negligible but m/M = 0.5. 
The objective is to determine the effect of the mass dynamics of the 

links. The simulation outputs for m = 0.0 and m = 0.09 kg are 
shown in Figs. 3 and 4, respectively. The result has shown that the 
forces required have been increased by approximateiy 20 percent due 
to the mass dynamics of the links. 

VII. CONCLUSION 
The dynamic analysis of a 3-DOF in-parallel actuated manipulator, 

which is characterized by its excellent rigidity, high strength-to- 
moving-weight ratio, and relatively simple inverse kinematics, has 
been formulated using Lagrangian approach. The inverse dynamic 
model, which predicts the forces required to actuate the links so that 
the manipulator follows a predetermined trajectory, are derived in 
joint space. The actuating link lengths of the manipulator are chosen 
as generalized coordinates and the velocity components have been 
expressed in terms of the generalized coordinates. 
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Fig. 4. Computing actuating force on m / M  = 0.5. 

In addition, a dynamic simulation program has been developed and 
a numerical example of tracing a helical path has been chosen to 
demonstrate the dynamic simulation. The result of the simulation 
illustrates the influence of the link dynamics on the actuating forces 
required. The dynamic model, which is essential for feedforward 
control of the manipulator, will serve as a basis for prototype design, 
control scheme development, prediction of inertia parameters. Future 
work will include prototype design and real-time simulation computer 
control scheme development and performance evaluation in an 
industrial environment. 
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